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Abstract. This paper extends the local asymptotic stability result by Arimoto and

Miyazaki [1] on the PID control for robots. By using a modified Lyapunov function,

local exponential stability and stable trajectory tracking are proved.

__ I. INTRODUCTION

The use of the total energy of a mechanical system to analyze its closed loop stability has gained

considerable popularity in the recent years. The basic idea is an old one [2,3], but the introduction
into the robotics literature has been relatively recent [4,5]. The main result in [4,5] can be simply
stated:

For an unconstrained serial manipulator, linear feedback of the joint position error, joint velocity,

and the gravity compensation drives the joint position error and joint velocity asymptotically to
zero.

There has been many extensionstothisbasicresult,forexample, the proofofexponentialconver-

gence [6], tracking control [7,6], adaptive control [7,8,9,10], attitude control [11], and multiple

arm control [12]. The simplicity of the original result sprang hope for a rigorous justification of the
"industrial" type controllers which are usually of the decentralized (local joint feedback), constant

gain, proportional-integral-derivative (PID) type, and works fairly well for the tracking of slowly

varying trajectories. The first result in this direction was by Arimoto and Miyazaki [1]. In that

work, an energy motivated Lyapunov stability analysis similar to that in [5] was performed, but

a somewhat awkward argument was needed to show local asymptotic stability of a PID set point
controlled robot. The gravity load was explicitly compensated for, but actually it was not needed.

No domain of convergence nor local rate of convergence was established in this result since the
LaSalle Invariance Principle [13] used for the proof does not provide this type of information in

genera]. In [14], an open loop linearization approach is used to strengthen the stability result
to local exponential stability. A domain of convergence is obtained, but the Lyapunov function

candidate is chosen based on the linearized system rather than the energy of the nonlinear system

(the analysis is done for the full nonlinear system) and only the set point control case is consid-

ered. In [15], a globally asymptotically stable PID coatrollei" was claimed. However, an erroneous
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assumption of compact joint space was used there. Tile assumption is false on two grounds: first,
the joint may be either prismatic or revolute, and, second, do = joint velocity has been used, which

means that the joint space is treated as R '_ and,therefore, mod(2r) arithmetics cannot be used.

This paper provides an important extension to [1]. The Lyapunov function candidate in [1]

is modified. Its derivative along the solution trajectory now contains a negative definite term so

that the desired stability result follows directly and the Invariance Principle is not needed. The

trajectory tracking control problem is considered, for the class of trajectories that eventually reach

a steady state (e.g., such as the transient shaping trajectories for point-to-point operations). Local

asymptotic stability is proved for sufficiently slowly varying trajectories. Bounds on the trajectory

tracking error, the allowable size of the initial tracking error, and the limits on the desired joint
velocities and accelerations are also obtained. As a special case, for the set point control, the (local)

convergence is of exponential rate and a domain of attraction is established. Combined with an
earlier result on the steady state convergence with PD control alone [6], the result here justifies

the control strategy of using PD control for the gross motion and PID control for the fine motion.

This is indeed the strategy used by the PUMA robot controller.

As mentioned earlier, a negative definite Lyapunov function derivative is also obtained in [14] by

considering the linearized system, and the approach can be generalized to tracking control. Due to

the many possible ways to choose a Lyapunov function candidate for a linear system, it is not clear

how to find the one that gives the largest domain of convergence. How the domain of convergence

is affected by the PID gains is also not known. It appears the Lyapunov function proposed here is

more "natural" in the sense that it is directly motivated by the total energy of the nonlinear system,

and the stability result only relates to the size of the gains; however, a quantitative comparison

between these two approaches has not been done.

Some background materials on robot dynamics are given in Section 2. In Section 3, the main
stability result is proved for the trajectory tracking problem, with the desired trajectory limited

to the moving set point type, i.e., eventually reaching a steady state. This result is then applied
to the special case of set point control. Simulation results based a three-link arm are presented in
Section 4.

2. BACKGROUND

We will consider an unconstrained N-link rigid robot arm with an actuator at each joint. This

is a special class of mechanical systems, and it should be emphasized that its dynamics is the result

of an energy minimization and therefore contains a great deal of structure. Let us start with the

total energy of the robot system:

Kinetic Energy =T = I_TM(/9)_
2

Gravitational Potential Energy =ZXU= g(/9) (2.1)

The vector/9 is the stacked vector of all the joint position from/91 to/gN. The matrix M(/9) is the

inertia matrix and it is symmetric positive definite (uldformly) for all/9.

The differential form of the robot dynamics can be obtained by using the Lagrangian approach.

Set the Lagrangian as
L=T-U

and then apply the Lagrangian equation

0 _)L 19L
(2.2)
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The resulting differential equation can be written in the following form:

M(O)O = r - C(O, 0)0 - k(O)

where

1 (O(M(O)O)'_

c(o,o)o t, N ) ] 0

represent the Coriolis and centrifugal forces, and

og(o)
k(o)= oo

is the gravity load torque. M is used to denote the derivative of M(O) along the solution, i.e.,

N

M(O,O)_=_ OM(O)o;
OOi

i=l

(2.3)

(2.4)

In (2.4), the matrix C(O, O) is not unique, only C(O, 0)0 is uniquely specified. The key structure

in (2.3) is in the relationship between C(O,O) and M(O). First define a matrix MD that depends

on two vector arguments:

MD(O,z) = Y_ _ • (2.5)
i=l

where ei is the i-th unit vector in Rg. Note that MD(O, z) is linear in z and nonlinear in 0. MD

and M are related in an interesting way:

MD(O,x)y = __/I(O,y)x

By using this notation, one representation of C(O, O) can be succinctly expressed:

C(O, O) = MD(O, O) - 1MTD(O, O)

(2.6)

(2.7)

(2.8)

MD also satisfies another identity:

MT(O,x)y = MT(O,y)x

This paper addresses the problem of using a PID controller to track a desired trajectory specified

by {0d, 0d, 0"d}. The desired trajectories are limited to the following class:

Od,_de z_(o,_), [m_{llOdllllOdll_, II/_dll}]2

{Od(t) --* Oss,

t
AO=O-Od AO=O--04 q = AO(s) ds

We will use the notation

L:(O,_)}

m
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#M_=ii_f amin(M(O)) "TM= sup IIM(O)II
0

&
"/k=sup llvok(O)ll

0

A
_d=supsup ]lMD(O,Oe(t))[I

t>o o

A
_.= supsup II_:t(o,0e(t))ll

t>O 0

and #s=_amin(Ks), 7, z)-III_',11,s = i,p, v, ami n denotes the minimum singular value.

3, MAIN RESULT

The main result of this paper states that with the PD gains chosen sufficiently large, the in-

tegral gain sufficiently small, and the desired trajectory sufficiently slow, PID control is locally
asymptotically stable. The precise statement of the result and its proof are presented below:

THEOREM I.

Consider the robot dynamic equation given by (2.3) . Let the control torque be given by

4'r(t) = -K, AO(t) - I(.AO(t) - Ki AO(s) d8 (3.1)

where Kp, K_, and Ki are symmetric positive de[inlte. If#_ > _ and II0dll_, II0_ll_, and II0dllr_
are sufficiently small, then for every M such that

II[q(0)+ Iq _k(0ss) a0(01 AD0)]II <--M,

any I(p sufficiently large and Ki sufficiently small implies that q(t) - K[ "1k(Oss), AO(t), AO(t) --* 0

asymptotically as t _ oo.

PROOF:

1. Define

_q = q + KT' k(Oss) _ = k(o_)- k(0) _kd = k(0ss) - k(Od)

By definition, Aka(t) ---*0 as t _ co. The first step is to construct a Lyapunov function candidate.

Consider the following scalar function:

W (Aq'AO'ZXO)=7SOJ L

iiAqll]T> I1_0.11|
IlzXOllJ

bs '. bmo)l r,, l
bI(_ Kp + cI(_ cM(#) | L ',A0 (3.2)bM(O) cM(O) M(O) J AoJ

cu,+b_,, b'r_ b'yM] [ IIAqll]b'?_ Up + cl2v C'TM I IlaOll (3.3)

bTM C_M ITM J IlaOll



m

m

_: _: -

u

Let b = _c. For c sufficiently small, specifically,

the lower block diagonal 2 x 2 submatrix in (3.3) is positive definite, and for c in this range, the

minimum eigenvalue is

1

_.(_ +_,,+ _u,,)- _-(_,_+_,,+_,v - u_(_,,+ _,,) + _,_ (3.5)

Now consider the full 3 x 3 matrix in (3.3). For a chosen c that satisfies (3.4) and any $ > 0, if c

is further small enough to satisfy

1 r,_,,d(c)(#_d(c)2 c#id(c)_ ½]4-,:°+ ) J (3.6)

=

D

r

where %,,.,,._=_/7_ + 7_, then W1 is a positive definite function.

To construct the desired Lyapunov function candidate, we need some extra terms dealing with

the gravitational potential energy:

w_ = 9(e) - g(od)- '-X0rk(0d) (3.7)

Define V = W1 + W2. When Aq = A0 = ,X0 = 0, V = 0. By the mean value theorem, there exist

E1 and f2 such that

w_ = _0rk(_l) - _eTk(ed)

= AoT_;ok(_)((1 - Od)

Since _¢1= 8a + A(O - Oa) where A is diagonal with elements between 0 and 1,

W'2 = AOTVok(f2)AAO

Combine with W1, it is clear that if

_p > -t_ (3.8)

and c satisfies (3.4) and (3.6) (with pp replaced by/_v - 3'k), then V is a positive definite function
and hence a Lyapunov function candidate. Furthermore, V is bounded below by a HxH2 where

x = [Aq T AO T A_ T ]T and

a = c(#i + 61,p) + o(c) (3.9)

V can also be bounded above by/3 [Ixl]2 with

/3 = c(Ti + 67p) + o(c) (3.10)
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2. The next step is to compute the derivative of

simplify the algebra, make the following definitions:

(3.2) along the solution trajectory (2.3). To

u

w
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1 1

½ = c_OTM(O)_O

V3 = 2cAqT KiAq

V4 = bAqT M(O)AO

V5 = bAqT KvAO

1/6 = 2bAqT KpAq

v7 = g(0) - g(ed) - a0rk(e_)

The Lyapunov function candidate V is the sum of all these functions. Now compute the derivate

along the solution of each of these terms,

1

= At_T(@_h_/(@, 0)A0 + r - C(0,t_)0 - k(0) - M(0)t_d) + AOT (Kp + cKv)AO

= -A_TIGA_ + cAeTK_O -- A_TK,Aq+ A_(Ak + Aka)

+ AeT(_(e, O)A_- C(e. 0)0 - M(_)Oa)

y_ = c_r M(e)_e + _er(_s(o, o)_o + _ - c(o, o)o - k(O)- M(e)_)

= -cASTI(_AO + cAOTM(_)AO - cAOTK_,AO - cAOI(_Aq + cAeT(Ak + Ak4)

+ _r(M(_, _)_0 - C(O,0)0 - g(o)i_)

V3 = cAqT KIAO

= b_rM(O)_O + _qr(_(O, _)_0 + _- c(O, _)_- _(0) -M(O)_)

= -bAqTK_Aq + bAOTM(O)A8 - bAqr(I(;A8 + K,,AO) + bAqT(Ak + Aka)

+ bAqT(l_(O, 0)A0 - C(O, 0)0 - M(O)i_d)

lf_ = bAOT KvAq + bAOT KvAO

V6 = bAq T KpAO

= --AoTAk _ 0T(v0k(( ) + (Vok(Od))T)Ao

r

m

To express all terms in the error coordinate, more straightforward algebraic manipulation is needed.
Define

hi = _1,',[(0, O)AO - C(O, 0)0

h_ = ½_9(0,_)_0 - C(O,O)#

6
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After some algebra, it can be shown that

h2 = h_ - 1_/(0, O)ZxO

= (-MD(O, Od) + MT(O, Od))AO + I(MDT(O, AO)- MD(O, AO))AO+

The following term appears in 1)1:

h2=-½AOTM(o,od),xo+ -AOT MD(O,Od))Od

Notice that two skew symmetric matrices in h2 disappear due to the inner product operation. The

following term appears in 1)2 and 1)5:

(cAO + bAq)Thl = (cAO + bAq) T [(--MD(O, Od) + MT(0,0d))A_J + 1MT(0, A0)A0+

Also, by using the mean value theorem, Ak can be replaced by Vok(()AO for some _ 6 RN. Since

k(O) consists of only sine and cosine functions, ll_'ok(O)H is uniformly bounded. Summing all the

1)i's together, the derivative of V can be expressed as:

1) = -xTQx + rTz + v (3.11)

where

Q_

Define

bKi

ix
r=[ bw cw + s w ]T

wT_=(1MTD(O, Od) -- 2vID(O, Od ))Od -- M(O)#a + Akd

sTA-((_;ok(_)) T - _70k(Od))O d

½( _AO)TMr(o, AO)ZXOv= bAq +

-lbVo_,(_) +b(MD(O,Od)
--MT(O,Od))-½K,

-½bVok(_) _(K. - vok({))
-b(I;_ + M(O))

-}M(O)

+_(MD(O, Oa)- MT(o,od))

(MD(O, Od)

--MT(O, Od)) -½K,

-aM(O)

+_(Mv(O, Od)- =%r(o,Od))
K,, - ½_i(O, Od) - cM(O)

Mo(O,z)
r/1 = sup sup

o • U*tl

7
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Now, _" can be over bounded by

where

T_r <__-xTQlxl -4- rTXl (3.12)

Axl=[ {{Aq{{{{AO{{{{Adll]T

+, ]Trl= [ bwl cwx + s, wl

+,3
Wl'--_Y/1 {lOdl{:+ _M[lOdl{+ }{+'k_l{

IlOdl{81 =27k

[ bl_i ½bTk bTd + ½7i

Qla [= 17i +bTM ]-tv -- _Te -- CTMb'Td 4" 2 CTd 4" 1

-%(bllAqll + c{lA0ll)

Note thatthe (3,3)--elementofQI depends on the state.In additionto (3.8),assume the derivative

gain issufficientlylarge:

#_ > 7Z (3.13)
2

First consider trajectories that satisfy

1
inf rtl(bllAq(t){{ + c {{A0(t)l{) < e(/_,, - _%) (3.14)t>0

for some e E (0, 1). If

< #p - 7k (3.15)
7M 4" "7'o

and c sufficiently small, then the lower block diagonal 2 x 2 submatrix of Q1 is positive definite,

and its smallest eigenvalue is Cgl 4- O(C) where

_x = _ - 7k - _(_r + %)

Suppose 7i and #i are chosen proportional to b:

7i = _c§i (3.16)
gi=eiTi=ei_cffl (Ei<l)

Then Q1 is positive definite if the following 2 x 2 matrix is positive definite

[_ ½c_ ]Q2 = L ½_:r _, + o(c)

where _ = 7k + 27d 4- _i. The smallest eigenvalue of Q2, #, is positive if c is sufficiently small and

_/2 (3.17)C#l ----
4(.ig/i

for any _ > 1. This implies #v needs to be sufficiently large for a specified size of c:

#P > 4ei_i--'---c4- 7k 4" t_(_/M nt" _v) (3.18)

8
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Conditions (3.8) and (3.15) are both subsumed by this condition. It follows that for c sufficiently

small, the minimum eigenvalue of Q1 is positive and it is given by

1

# = C2_2Eiz/i(1 -- _) + O(C 2) (3.19)

Also note that for a sufficiently small c and #p that satisfies (3.18) , both (3.4) and (3.6) are
satisfied.

3. We have shown that if, along a trajectory such that (3.14) is satisfied, c is sufficiently small,

then _Y can be bounded above by

Y'(t,=) _<-# Ilzll = + p,(O Ilzll (3.20)

where # is given by (3.19) and pi(t) = Ik,(t)ll. Let _V be the positive root of V = W =. Then

I/V <_ -)_W + p(t) (3.21)

where ,_ = 2-e#,p = 2-P-_.

We can bound W along trajectories by using the fact that p E L2(0, c_). By integrating by parts

in (3.21) , we obtain the following bound:

w(t) _<e-_'W(o) + e-x('-') p(_) d_ (3.22)

The second term on the right hand side goes to zero as t _ e_ since it corresponds to the output of

an exponentially stable system (with Laplace transform (s + ,_)-_ ) driven by an L2 signal (Theorem

6.4.1 in 16). Hence, the closed loop asymptotic stability of the error system follows from (3.22) .

By using the Schwartz inequality, we have

1

W(t) <_e-'X_W(O) + _ IIPlI_ (3.23)

4. Since a I1=11=<__w= < Z I1=11=,we can ensure that (3.14) is satisfied if

rh(l + _)c (# ) 1 (3.24)llpll_,+ w(o) _<_(#. - _%)

For c small 6#p and 6-_p dominate #i and 7i, respectively. Hence by using (3.9), (3.10), (3.16),
(3.18) , (3.19) , the left hand side, to order c, is

r11(1 _)llpll_v_+
+ r_(1 + '_)_11=(0)11#_/-'_--_ (3.25)

v "h,

Let #p = %3'p, % < 1, then (3.24) is satisfied for c sufficiently small if

m(1 + _)I!p!l__+ ,7,(1+,_)cll=(o)ll < #,, _ !_.
{%ei'_'i(1 - _')

2 (3.26)
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In the above condition, 6 can be chosen to be an arbitrary positive constant (its value does affect

the strength of the condition but not the qualitative result). Other constants can be arbitrarily

chosen provided 0 < ep < 1, 0 < ei < 1, _ > 1, _/i > O.

Assume the desired trajectory varies sufficiently slowly in the sense that []PILL2is small enough

so the first term in the left hand side of (3.26) is less than the right hand side. Then for the initial

condition [[x(0)[[ in a ball, there exists a range of c, (0,cl), sufficiently small so that (3.26) is
satisfied, cl also has to be chosen sufficiently small so that V is a Lyapunov function candidate

(with #p chosen according to (3.8), and c sufficiently small, (3.4) and (3.6) are satisfied). For c

in the required range, #p has to be sufficiently large in the sense of (3.8) , and ")'i has to be chosen

sufficiently small in the sense of (3.16) .

To summarize, given the initial condition in a ball ([[x(0)[] < M), if the desired trajectory

varies sufficiently slowly, and the PD gains are chosen sufficiently large, the integral gain is chosen

sufficiently small, then the solution trajectory of the error system converges to the zero equilibrium

asymptotically. |

Many constants are introduced in the above proof, it is useful to summarize how they axe chosen.

/5>0

-_>0

_ (0,1)
_ _ (0,1)

_ _ (0,1)
_>1

1

#,, > _%

c has to be chosen so that

(1) The followingmatrix ispositivedefinite(essentiallyjustQI):

cS#i ½c67k
½c_k _((l,, - ,k) - _(,M + _o))

L + +

+ ÷) l
+

(1 - ) - J

(2) for a given ball of initial conditions, (3.26) is satisfied,

(3) Conditions (3.4) and (3.6) are satisfied.

Once c is chosen, #_ should be chosen according to (3.18) , and #i is given by (3.16) .

Note the condition on K_ is independent of the initial condition, in fact, for the set point case,

Kv > 0 suffices. The condition on the desired velocity and acceleration is also independent of the

initial condition, indeed, if

rh(l _)llpll_+
< try-k-'l% (3.27)

then there exists a range of c sufficiently small such that (3.26) is satisfied. Kp and Ki do depend
on the initial condition. For z(0) in a given ball, the allowable range of c determines the minimum

size of Kp in (3.18) and the maximum size of Ki in (3.16). Note that the domain of convergence

can be made arbitrarily large with sufficiently large/(p and sufficiently small Ki. In contrast, for

linear systems, sufficiently small I(i guara_ltees global exponential stability.

10
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As seen from (3.23) , the convergence rate of x(t) depends on the size of the desired velocity and

acceleration, and on #, which is O(c2). A chosen set of gains, Kp, K., Ki, determines the allowable

range of c which then results in some convergence rate of x(t). For a given c, large integral gain

implies large "_i, and, consequently, #, which improves the transient performance. However, from

(3.18), Kp must be chosen sufficiently large accordingly. Hence, we expect improved response with

high PI gains. This was indeed observed in simulation (see next section).

For the tracking control, W(0) is usually small (gravity load at the starting position can be

found experimentally). Then (3.26) limits the type of trajectories that the PID controller can

stably track, i.e., those that vary sufficiently slowly with time.

In the set point control case (the case considered in [1]), p - 0, then (3.26) provides a domain of

attraction. As stated before, the size of this domain of attraction can be made arbitrarily large with

sufficiently high proportional gain and sufficiently low integral gain since c can be driven arbitrarily

close to zero. Also, the zero equilibrium of the error system is locally exponentially stable in this
case.

A key advantage of the stability proof in this paper over the approach in [1] is that our _"

contains a strictly negative definite term. This allows one to show robustness when the noise effect
is considered. Note that the robustness with respect to a constant disturbance is built in, since it

can be lum.p.ed with the gravity load. The advantage of incorporating model based compensation
(e.g., M(0)0d) is also evident, as it will reduce the size of p.

4. SIMULATION I_ESULTS

Simulation results for PID control of a three-link planar arms are summarized in this section.

The arm geometric and mass parameters are selected to emulate the PUMA 560 arm moving in a

plane (i.e. joints 1, 4 and 6 are locked). The mass values and inertia values are with respect to

the ]ink centers of mass. The following values are taken from [17] which are calibrated versions of

those in [18]:

joint number link length distance to link

(m) center of mass (in)
1 0.43180 0.068

2 0.43307 0.070

3 0.25 0.10

Table 1.

-- joint number link mass (kg)
1 17.4

2 4.8

-- 3 3.0

= .

W

=

m

w

m

Arm Geometric Parameters

link inertia (kg-m 2) motor inertia (kg-m 2)
0.539 2.02E-4

0.086 2.02E-4

0.40E-3 1.83E-5

gear ratio
107.815

53.7063

71.923

Table 2. Arm Mass Parameters

The desired trajectory is shaped according to

o(t) = o: - (o: -

O(t) = 2ta(Of - Oi )e -'_?

where

e =[0 o 0]
0! =[1.5708 0.78.54 0.3927]

(4.1)

11



m

w

i

=:

The nominal PID gains are chosen to be

I(p = diag{1, 1, 1}

I(_ = diag{.5, .5, .5}

Ki = diag{.1, .1, .1}

Fig. 1 shows the response of joint 1 angle for I(p ranging from the nominal value, to 2x, 5x

and 10 x the nominal, while Kv and Ki are held at the nominal values. Clearly, the effect of Kp is

in reducing the transient tracking error in the gross motion. But after the desired trajectory has

reached a steady state, large Kp's only slightly improve the rate of convergence of the tracking error.

This is expected, since, as was shown in [6], PD control alone (i.e., Ki = 0) drives all trajectories

to a steady state, but with a steady state error inversely proportional to Kp and proportional to

the gravity load. Hence, as I(p tends to infinity, the steady state error will be reduced to zero, but

the level of Kp may not be practically acceptable.

Fig. 2 shows the improved set point control response with large integral gains. Here, I(p is held
at 10 times the nominal value, and I(i is increased from the nominal, to 5x and 10x the nominal

value. The gross motion responses are very similar, but in the set point control region, large Ki

gain results in significantly faster convergence.

The increase in the Ki gain needs to be accompanied by the corresponding increase in Kp gain.

When both are large, e.g., I(p is 20 times the nominal and Ki is 50 times the nominal, the response
is very good as seen in Fig. 3. However, when I(p is at the nominal value, unstable oscillation
occurs.

Variation in K_ did not produce significant change in the performance. This agrees with the

proof where K_ only needs to be greater than _ to ensure stability but does not significantly affect
the transient performance.

5. CONCLUSION

The stability result by Arimoto and Miyazaki on the PID control for robots is extended in

this paper. The trajectory tracking case is considered and local asymptotic stability is shown for

sufficiently high PD gains, sufficiently low integral gain, and sufficiently slowly varying desired

trajectories. Further consequence of our approach include local exponential stability in the set

point case, a negative definite term in the Lyapunov derivative to allow robustness analysis, and
an expression for the domain of attraction. Future generalization include adding partial model

information to improve the tracking performance, adaptation of the model information, and gain

adaptation.
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